首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mapping potential energy surfaces
Authors:Wu Yudong  Schmitt Jeffrey D  Car Roberto
Institution:Department of Chemistry and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08540, USA.
Abstract:A recently proposed dynamical method A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. 99, 12562 (2002)] allows us to globally sample the free energy surface. This approach uses a coarse-grained non-Markovian dynamics to bias microscopic atomic trajectories. After a sufficiently long simulation time, the global free energy surface can be reconstructed from the non-Markovian dynamics. Here we apply this scheme to study the T=0 free energy surface, i.e., the potential energy surface in coarse-grained space. We show that the accuracy of the reconstructed potential energy surface can be dramatically improved by a simple postprocessing procedure with only minor computational overhead. We illustrate this approach by conducting conformational analysis on a small organic molecule, demonstrating its superiority over traditional unbiased approaches in sampling potential energy surfaces in coarse-grained space.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号