首页 | 本学科首页   官方微博 | 高级检索  
     


Pore diameter mapping using double pulsed-field gradient MRI and its validation using a novel glass capillary array phantom
Authors:Komlosh Michal E  Özarslan Evren  Lizak Martin J  Horkay Ferenc  Schram Vincent  Shemesh Noam  Cohen Yoram  Basser Peter J
Affiliation:Section on Tissue Biophysics and Biomimetics, Program on Pediatric Imaging and Tissue Sciences, NICHD, NIH, Bethesda, MD 20892-5772, USA. komloshm@mail.nih.gov
Abstract:Double pulsed-field gradient (d-PFG) MRI can provide quantitative maps of microstructural quantities and features within porous media and tissues. We propose and describe a novel MRI phantom, consisting of wafers of highly ordered glass capillary arrays (GCA), and its use to validate and calibrate a d-PFG MRI method to measure and map the local pore diameter. Specifically, we employ d-PFG Spin-Echo Filtered MRI in conjunction with a recently introduced theoretical framework, to estimate a mean pore diameter in each voxel within the imaging volume. This simulation scheme accounts for all diffusion and imaging gradients within the diffusion weighted MRI (DWI) sequence, and admits the violation of the short gradient pulse approximation. These diameter maps agree well with pore sizes measured using both optical microscopy and single PFG diffusion diffraction NMR spectroscopy using the same phantom. Pixel-by-pixel analysis shows that the local pore diameter can be mapped precisely and accurately within a specimen using d-PFG MRI.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号