首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The maximum number of carbonyl groups around an Ru6C polyhedral cluster: hexanuclear ruthenium carbonyl carbides
Authors:Li Chunjiao  Xu Jingchen  Zhao Jijun  Tian Dongxu  King R Bruce
Institution:Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian, 116024, China.
Abstract:Octahedral, trigonal prismatic, and capped square pyramidal structures have been optimized for the Ru(6)C(CO)(n) clusters (15 ≤ n ≤ 20) using density functional theory. The experimentally known very stable Ru(6)C(CO)(17) is predicted to have an octahedral structure in accord with experiment as well as the Wade-Mingos rules. The stability of Ru(6)C(CO)(17) is indicated by its high carbonyl dissociation energy of ~37 kcal mol(-1) and the high energy of ~33 kcal mol(-1) required for disproportionation into Ru(6)C(CO)(18) + Ru(6)C(CO)(16). Theoretical calculations predict a doubly carbonyl bridged octahedral Ru(6)C(CO)(17) structure to be ~0.7 kcal mol(-1) more stable than the experimentally observed singly bridged structure. A trigonal prismatic Ru(6)C(CO)(19) cluster isoelectronic with the known Co(6)C(CO)(15)(2-) dianion does not appear to be viable as indicated by a low carbonyl dissociation energy of 8.8 kcal mol(-1) and a required energy of only 4.9 kcal mol(-1) for disproportionation into Ru(6)C(CO)(20) + Ru(6)C(CO)(18). The predicted instability of Ru(6)C(CO)(n) (n ≥ 18) derivatives suggests a maximum of 17 external carbonyl groups around a stable polyhedral Ru(6)C structure.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号