首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A new non-invasive, quantitative Raman technique for the determination of an active ingredient in pharmaceutical liquids by direct measurement through a plastic bottle
Authors:Kim Minjung  Chung Hoeil  Woo Youngah  Kemper Mark S
Institution:a Department of Chemistry, Hanyang University, Seoul 133-791, Republic of Korea
b Korea Institute of Toxicology, Daejon 305-343, Republic of Korea
c Kaiser Optical Systems, 371 Parkland Plaza, Ann Arbor, MI 48103, USA
Abstract:The concentration of an active pharmaceutical ingredient (povidone) in a commercial eyewash solution has been measured directly through a plastic (low-density polyethylene: LDPE) container using a wide area illumination (WAI) Raman scheme. The WAI scheme allows excitation using a 6 mm laser spot (focal length: 248 mm) that is designed to cover a wide sample area. As a result, it has the potential to improve the reliability Raman measurements by significantly enhancing representative sample interrogation, thus improving the reproducibility of sampling. It also decreases the sensitivity of sample placement with regard to the excitation focal plane. Simultaneously, isobutyric anhydride was placed in front of the bottles to use for a synchronous external standard configuration. This helps to correct the problematic variation of Raman intensity from the inherent fluctuation in laser power. Using the WAI Raman scheme combined with the synchronous standard method, the povidone concentration was successfully measured with spectral collection that was performed through a plastic barrier. The conventional Raman scheme was difficult to employ for the same purpose because of the degraded spectral reproducibility resulting from the smaller laser illumination area and the sensitivity of such an approach to the position of the sample bottle. The result from this study suggests that the WAI scheme exhibits a strong potential for the non-destructive quantitative analysis of pharmaceuticals measured directly in plastic containers. Preliminary work also shows that similar measurements can also be made in glass bottles. If implemented, this technique could be utilized as a simple and rugged method for quality assurance of final products in a manner consistent with Process analytical technology (PAT) requirements.
Keywords:Pharmaceutical liquids  Raman spectroscopy  Process analytical technology  Non-destructive analysis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号