首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes
Authors:Xiao Fei  Zhao Faqiong  Li Jiangwen  Yan Rui  Yu Jingjing  Zeng Baizhao
Institution:Department of Chemistry, Wuhan University, Wuhan 430072, PR China
Abstract:A novel composite film modified glassy carbon electrode has been fabricated and characterized by scanning electron microscope (SEM) and voltammetry. The composite film comprises of single-wall carbon nanotube (SWNT), gold nanoparticle (GNP) and ionic liquid (i.e. 1-octyl-3-methylimidazolium hexafluorophosphate), thus has the characteristics of them. The resulting electrode shows good stability, high accumulation efficiency and strong promotion to electron transfer. On it, chloramphenicol can produce a sensitive cathodic peak at −0.66 V (versus SCE) in pH 7.0 phosphate buffer solutions. Parameters influencing the voltammetric response of chloramphenicol are optimized, which include the composition of the film and the operation conditions. Under the optimized conditions, the peak current is linear to chloramphenicol concentration in the range of 1.0 × 10−8-6.0 × 10−6 M, and the detection limit is estimated to be 5.0 × 10−9 M after an accumulation for 150 s on open circuit. The electrode is applied to the determination of chloramphenicol in milk samples, and the recoveries for the standards added are 97.0% and 100.3%. In addition, the electrochemical reaction of chloramphenicol and the effect of single-wall carbon nanotube, gold nanoparticle and ionic liquid are discussed.
Keywords:Chloramphenicol  Ionic liquid  Gold nanoparticles  Single-wall carbon nanotubes  Voltammetry
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号