首页 | 本学科首页   官方微博 | 高级检索  
     


NMR and theoretical study on the coordination and solution structures of the interaction between diperoxovanadate complexes and histidine-like ligands
Authors:Yu Xian-Yong  Cai Shu-Hui  Xu Xin  Chen Zhong
Affiliation:Departments of Physics and Chemistry, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, P.R. China.
Abstract:To simulate the types of coordination and solution structures of the active site of haloperoxidases, the interaction systems between diperoxovanadate complexes [OV(O2)2L]n- (n = 1 or 3, L = oxalate or H2O) and a series of histidine-like ligands in solution have been studied by using 1D multinuclear (1H, 13C, and 51V) NMR, 2D diffusion ordered spectroscopy, and variable-temperature NMR in 0.15 mol/L NaCl ionic medium, representing the physiological conditions of human blood. Some direct NMR data are given for the first time. The reactivity among the histidine-like ligands is imidazole > 2-methylimidazole > carnosine approximately 4-methylimidazole > histidine. Competitive coordination interactions result in a series of new peroxovanadate species [OV(O2)2L']- (L' = histidine-like ligands). When the ligands are 4-methylimidazole, histidine, and carnosine, a pair of isomers have been observed, which are attributed to different types of coordination between vanadium atom and ligands. The results of density functional theory calculations provided a reasonable explanation on the relative reactivity of the histidine-like ligands and the molar ratios of isomers. Theoretical results signify the importance of the solvation effect for the reactivity and stability of the interaction systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号