首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels
Authors:Mohammad R Khan  Chris Trlica  Michael D Dickey
Institution:Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
Abstract:This paper describes the mechanistic details of an electrochemical method to control the withdrawal of a liquid metal alloy, eutectic gallium indium (EGaIn), from microfluidic channels. EGaIn is one of several alloys of gallium that are liquid at room temperature and form a thin (nm scale) surface oxide that stabilizes the shape of the metal in microchannels. Applying a reductive potential to the metal removes the oxide in the presence of electrolyte and induces capillary behavior; we call this behavior “recapillarity” because of the importance of electrochemical reduction to the process. Recapillarity can repeatably toggle on and off capillary behavior by applying voltage, which is useful for controlling the withdrawal of metal from microchannels. This paper explores the mechanism of withdrawal and identifies the applied current as the key factor dictating the withdrawal velocity. Experimental observations suggest that this current may be necessary to reduce the oxide on the leading interface of the metal as well as the oxide sandwiched between the wall of the microchannel and the bulk liquid metal. The ability to control the shape and position of a metal using an applied voltage may prove useful for shape reconfigurable electronics, optics, transient circuits, and microfluidic components.
Keywords:eutectic gallium indium  liquid metals  microfluidics  recapillarity  actuation of liquid metals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号