首页 | 本学科首页   官方微博 | 高级检索  
     检索      


pH-responsive behavior of selectively quaternized diblock copolymers adsorbed at the silica/aqueous solution interface
Authors:Sakai Kenichi  Smith Emelyn G  Webber Grant B  Baker Murray  Wanless Erica J  Bütün Vural  Armes Steven P  Biggs Simon
Institution:School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT, UK. k-sakai@rs.noda.tus.ac.jp
Abstract:The desorption and subsequent pH-responsive behavior of selectively quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate) (PDMA-PDEA) films at the silica/aqueous solution interface has been characterized. The copolymer films were prepared at pH 9, where micelle-like surface aggregates are spontaneously formed on silica. The subsequent rinse with a copolymer-free electrolyte solution adjusted to pH 9 causes partial desorption of the weakly or non-quaternized copolymers, but negligible desorption for the highly quaternized copolymers. Further rinsing with a pH 4 electrolyte solution results in additional desorption and extension (swelling) of the remaining adsorbed copolymer film normal to the interface. This pH-responsive behavior is reversible for two pH cycles (9-4-9-4) as monitored by both quartz crystal microbalance with dissipation monitoring (QCM-D) and also zeta potential measurements. The magnitude of the pH-responsive behavior depends on the mean degree of quaternization of the PDMA block. Moreover, a combination of contact angle data, zeta potential measurements and in situ atomic force microscopy (AFM) studies indicates that the pH-responsive behavior is influenced not only by the number of cationic binding sites on the adsorbed copolymer chains but also by the adsorbed layer structure.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号