首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low cross-linked molecularly imprinted monolithic column prepared in molecular crowding conditions
Authors:Mu Li-Na  Wang Xian-Hua  Zhao Liang  Huang Yan-Ping  Liu Zhao-Sheng
Institution:Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
Abstract:Molecular crowding is a new approach to promoting molecular imprinting more efficiently. In this work, this concept was applied to the preparation of low cross-linked imprinted polymers in the presence of an immobilised template for stabilizing binding sites and improving molecular recognition. An imprinted monolithic column was synthesized using a mixture of 2,4-diamino-6-methyl-1,3,5-triazine (template), 2,4-diamino-6-(methacryloyloxy) ethyl-1,3,5-triazine (polymerisable template), methacrylic acid, ethylene glycol dimethacrylate, and polystyrene (molecular crowding agent). Some polymerization factors, such as template-monomer molar ratio, the composition of the porogen and crosslinking density, on the imprinting effect of resulting MIP monolith were systematically investigated. The results indicated that the imprinted monolithic columns prepared in the presence of molecular crowding agent retained affinity and specificity for template even when prepared with a level of cross-linker as low as 9%. Moreover, a stoichiometric displacement model for retention was successfully applied to evaluate the interaction between the solute and the stationary phase. Compared with the low cross-linked MIP prepared by conventional polymerization, the molecular crowding-based low cross-linked monolithic MIPs showed higher selectivity. The results suggested that molecular crowding is a powerful strategy to increase the effect of molecular imprinting at a low level of crosslinker.
Keywords:Immobilised template  Molecular crowding  Monolithic column  Molecularly imprinted polymer  2  4-Diamino-6-methyl-1  3  5-triazine
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号