首页 | 本学科首页   官方微博 | 高级检索  
     检索      

沉积温度对等离子体化学气相沉积制备硅氧薄膜微结构的影响
引用本文:由甲川,赵雷,刁宏伟,王文静.沉积温度对等离子体化学气相沉积制备硅氧薄膜微结构的影响[J].人工晶体学报,2021,50(3):509-515.
作者姓名:由甲川  赵雷  刁宏伟  王文静
作者单位:1.中国科学院电工研究所,中国科学院太阳能热利用及光伏系统重点实验室,北京 100190;2.中国科学院大学,北京 100049;3.洁净能源国家实验室,大连 116023
基金项目:国家自然科学基金面上项目(61674151); 中国科学院“变革性洁净能源关键技术与示范”战略性先导科技专项课题(XDA21060500); 北京市科技计划课题(Z181100004718003)
摘    要:利用13.56 MHz的射频等离子体化学气相沉积设备(RF-PECVD)在不同沉积温度(50~400 ℃)下制备了一系列氢化硅氧(SiOx:H)薄膜材料,并研究了薄膜材料性能与微结构的变化规律。随着沉积温度的增加,薄膜内的氧含量(CO)下降,晶化率(XC)也下降,折射率(n)上升,此外,薄膜的结构因子(R)下降,氢含量(CH)先上升后下降,由此在合适的中间温度下可以获得最大的氢含量。通过实验结果分析提出了不同沉积温度下制备硅氧薄膜的内在微结构模型:低温下沉积的硅氧薄膜是以氢化非晶硅氧(a-SiOx:H)相为主体并嵌入氢化纳米晶硅(nc-Si:H)的复合材料,而在高温下沉积的硅氧薄膜则是以氢化非晶硅(a-Si:H)相为主体并嵌入越来越少的nc-Si:H相和a-SiOx:H相的复合材料。由上可知,要制备太阳电池通常采用的晶化率XC高、氧含量CO高的氢化纳米晶硅氧(nc-SiOx:H)材料,需要采用相对较低的沉积温度。

关 键 词:硅氧薄膜  纳米晶硅氧  等离子体化学气相沉积  沉积温度  晶化率  氧含量  氢含量  
收稿时间:2021-01-24

Effect of Deposition Temperature on Microstructure of Silicon Oxide Film Prepared by Plasma Enhanced Chemical Vapor Deposition
YOU Jiachuan,ZHAO Lei,DIAO Hongwei,WANG Wenjing.Effect of Deposition Temperature on Microstructure of Silicon Oxide Film Prepared by Plasma Enhanced Chemical Vapor Deposition[J].Journal of Synthetic Crystals,2021,50(3):509-515.
Authors:YOU Jiachuan  ZHAO Lei  DIAO Hongwei  WANG Wenjing
Institution:1. Key Laboratory of Solar Thermal Energy and Photovoltaic System of Chinese Academy of Sciences, Institute of Electrical Engineering,Chinese Academy of Sciences, Beijing 100190, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Dalian National Laboratory for Clean Energy, Dalian 116023, China
Abstract:Hydrogenated silicon oxide (SiOx:H) films were prepared by 13.56 MHz radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The effect of the deposition temperature (T) variation (from 50 ℃ to 400 ℃) on the film performance and microstructure were investigated. The T increases could induce the decreases of oxygen content (CO) in the SiOx:H film and at the same time make the film transform from nanocrystalline state to amorphous state gradually, which resulted in the film crystallinity (XC) decreases and the film refractive index (n) increases. Further, it was found that the microstructure factor (R) decreases and the hydrogen content (CH) in the SiOx:H film increases first and then decreases with the T increases. A maximum of CH could be obtained with an intermediate T. Based on the above results, the low-temperature formed film is considered as a typical composite with hydrogenated nanocrystalline silicon (nc-Si:H) inserted in the hydrogenated amorphous silicon oxide (a-SiOx:H) matrix, however, the high-temperature deposited film consists of hydrogenated amorphous silicon (a-Si:H) matrix with nc-Si:H and a-SiOx:H phases less and less diluted inside. The results show that excellent hydrogenated nanocrystalline silicon oxide (nc-SiOx:H) film with high XC and CO for solar cell application should be deposited at a relatively low temperature.
Keywords:silicon oxide film  nanocrystalline silicon oxide  PECVD  deposition temperature  crystallinity  oxygen content  hydrogen content  
本文献已被 CNKI 等数据库收录!
点击此处可从《人工晶体学报》浏览原始摘要信息
点击此处可从《人工晶体学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号