首页 | 本学科首页   官方微博 | 高级检索  
     检索      

垒层温度对InGaN量子点/量子阱复合结构内量子效率的影响
引用本文:平晨,贾志刚,董海亮,张爱琴,许并社.垒层温度对InGaN量子点/量子阱复合结构内量子效率的影响[J].人工晶体学报,2021,50(5):809-815.
作者姓名:平晨  贾志刚  董海亮  张爱琴  许并社
作者单位:1.太原理工大学,新材料界面科学与工程教育部重点实验室,太原 030024; 2.太原理工大学轻纺工程学院, 太原 030024; 3.陕西科技大学,材料原子·分子科学研究所,西安 710021
基金项目:国家自然科学基金(61904120,21972103,61604104,51672185);国家重点研发计划(2016YFB0401803);山西省基础研究项目(201901D111127,201801D221124,201801D121101,201901D111111,201901D211090,201601D202029);山西省重点研发项目(201803D31042)
摘    要:使用金属有机化学气相沉积(metal organic chemical vapor deposition, MOCVD)方法生长了三个具有不同垒层温度的InGaN/GaN量子阱。由于高密度V型坑的形成,完整的量子阱结构被破坏,转变成了InGaN量子点(quantum dots, QDs)/量子阱(quantum well, QW)复合结构。通过变功率光致发光谱和变温光致发光谱,分析了在不同的垒层温度下量子限制斯塔克效应(quantum confined Stark effect, QCSE)、非辐射复合中心密度和载流子局域化效应的变化。结果表明:在较低的垒层温度下,QCSE较弱,因为在较低的温度下,V型坑的深度较深,应力释放较明显,残余应变较低;非辐射复合中心密度也随着温度的升高而逐渐增大;样品的内量子效率(internal quantum efficiency, IQE)随着垒层生长温度的升高而降低。QCSE的增强和非辐射复合中心密度的增大是垒层生长温度升高时内量子效率下降的主要因素。

关 键 词:量子点/量子阱复合结构  V型坑  量子限制斯塔克效应  非辐射复合中心  内量子效率  金属有机化学气相沉积  
收稿时间:2021-03-03

Effect of Barrier Temperature on Internal Quantum Efficiency in InGaN Quantum Dots/Quantum Well Hybrid Structure
PING Chen,JIA Zhigang,DONG Hailiang,ZHANG Aiqin,XU Bingshe.Effect of Barrier Temperature on Internal Quantum Efficiency in InGaN Quantum Dots/Quantum Well Hybrid Structure[J].Journal of Synthetic Crystals,2021,50(5):809-815.
Authors:PING Chen  JIA Zhigang  DONG Hailiang  ZHANG Aiqin  XU Bingshe
Institution:1. Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China; 2. College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 3. Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an 710021, China
Abstract:Three InGaN/GaN quantum wells: S1 (830 ℃), S2 (840 ℃) and S3 (850 ℃) with different barrier temperatures were grown by metal organic chemical vapor deposition (MOCVD). Due to the formation of high-density V-shaped pits, the perfect quantum well structure was destroyed and transformed into InGaN quantum dots (QDs)/quantum well (QW) hybrid structure. Atomic force microscopy (AFM), high-angle annular dark-field imaging (HAADF) and energy dispersive spectrometer (EDS) were employed to analyze the morphology and related causes of the three samples. The changes of quantum confined Stark effect (QCSE), nonradiative recombination center density and carrier localization effect at different barrier temperatures were analyzed by EPDD-PL(excitation power density dependent photoluminescence) and TD-PL(temperature dependent photoluminescence). The results show that QCSE is weaker at lower barrier temperature, because at lower temperature, the V-shaped pits are deeper, inducing more obvious stress release and lower the residual strain. With the increase of barrier growth temperature, the density of nonradiative recombination centers increase gradually. The internal quantum efficiency (IQE) of S1, S2 and S3 samples decrease with the increase of barrier growth temperature. Finally, it is found that the enhancement of QCSE and the higher density of nonradiative recombination centers are the main factors for the decrease of IQE with the increase of barrier growth temperature.
Keywords:quantum dot/quantum well hybrid structure  V-shaped pit  QCSE  nonradiative recombination center  IQE  MOCVD  
本文献已被 CNKI 等数据库收录!
点击此处可从《人工晶体学报》浏览原始摘要信息
点击此处可从《人工晶体学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号