首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Formation and characterization of the oxygen-rich hafnium dioxygen complexes: OHf(eta2-O2)(eta2-O3), Hf(eta2-O2)3, and Hf(eta2-O2)4
Authors:Gong Yu  Zhou Mingfei
Institution:Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Advanced Materials Laboratory, Fudan University, Shanghai 200433, People's Republic of China.
Abstract:Hafnium atom oxidation by dioxygen molecules has been investigated using matrix isolation infrared absorption spectroscopy. The ground-state hafnium atom inserts into dioxygen to form primarily the previously characterized HfO(2) molecule in solid argon. Annealing allows the dioxygen molecules to diffuse and react with HfO(2) to form OHf(eta(2)-O(2))(eta(2)-O(3)), which is characterized as a side-on bonded oxo-superoxo hafnium ozonide complex. Under visible light (532 nm) irradiation, the OHf(eta(2)-O(2))(eta(2)-O(3)) complex either photochemically rearranges to a more stable Hf(eta(2)-O(2))(3) isomer, a side-on bonded di-superoxo hafnium peroxide complex, or reacts with dioxygen to form an unprecedented homoleptic tetra-superoxo hafnium complex: Hf(eta(2)-O(2))(4). The Hf(eta(2)-O(2))(4) complex is determined to possess a D(2d) geometry with a tetrahedral arrangement of four side-on bonded O(2) ligands around the hafnium atom, which thus presents an 8-fold coordination. These oxygen-rich complexes are photoreversible; that is, formation of Hf(eta(2)-O(2))(3) and Hf(eta(2)-O(2))(4) is accompanied by demise of OHf(eta(2)-O(2))(eta(2)-O(3)) under visible (532 nm) light irradiation and vice versa with UV (266 nm) light irradiation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号