首页 | 本学科首页   官方微博 | 高级检索  
     检索      

〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为
引用本文:邓小良,祝文军,贺红亮,伍登学,经福谦.〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为[J].物理学报,2006,55(9):4767-4773.
作者姓名:邓小良  祝文军  贺红亮  伍登学  经福谦
作者单位:(1)四川大学物理科学与技术学院,成都 610064; (2)中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室,绵阳 621900; (3)中国工程物理研究院流体物理研究所冲击波物理与爆轰物理重点实验室,绵阳 621900;四川大学物理科学与技术学院,成都 610064
基金项目:国家自然科学基金委员会-中国工程物理研究院联合资助项目;中国工程物理研究院基金
摘    要:利用分子动力学方法模拟计算了单晶铜中纳米孔洞在沿〈111〉晶向冲击加载下增长的早期过程.测量发现不同加载强度下等效孔洞半径随时间近似成线性变化.观测到单孔洞增长的两种位错生长机理:加载强度较低时,只在沿着冲击加载方向的孔洞顶点附近区域有位错的成核和运动;而随着加载强度超过一定阈值,在沿冲击加载和其垂直方向的孔洞顶点区域都观察到位错的成核和运动.在前一种机理作用下,孔洞只沿加载方向增长;在后一种机理作用下,孔洞同时沿加载和垂直于加载方向增长.分析孔洞表面原子的位移历史,发现沿加载及与其垂直方向的孔洞顶点沿径向的速度基本恒定,由此提出了一个孔洞生长模型,可以解释孔洞增长的线性生长规律. 关键词: 纳米孔洞 分子动力学 冲击加载 位错

关 键 词:纳米孔洞  分子动力学  冲击加载  位错
文章编号:1000-3290/2006/55(09)/4767-07
收稿时间:01 22 2006 12:00AM
修稿时间:2006-01-222006-03-10

Initial dynamic behavior of nano-void growth in single-crystal copper under shock loading along <111> direction
Deng Xiao-Liang,Zhu Wen-Jun,He Hong-Liang,Wu Deng-Xue,Jing Fu-Qian.Initial dynamic behavior of nano-void growth in single-crystal copper under shock loading along <111> direction[J].Acta Physica Sinica,2006,55(9):4767-4773.
Authors:Deng Xiao-Liang  Zhu Wen-Jun  He Hong-Liang  Wu Deng-Xue  Jing Fu-Qian
Institution:1 Lab for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, Mianyang 621900, China; 2 Department of Physics, Sichuan University, Chengdu 610064, China
Abstract:Initial stage of nano-void growth in single crystal copper under shock loading along <111> direction has been investigated by using molecular dynamics (MD) simulation. The results show the void growth rate, represented by iucrease of equivalent radius of void vs time, keeps constant under certain shock strength. Two kinds of dislocation mechanisms of single void growth have been observed. When shock strength is lower than a critical value, dislocations nucleate and move outward only in the area around two vertices of the void along the shock direction and the void only grows along shock direction. When shock strength exceeds the critical value, dislocations nucleate and move outward not just in the above area but also in the equator perpendicular to the shock direction, and the void grows both along the shock direction and its normal. By examining the displacement history of atoms around the void surface, we find that the radial velocities of the vertices along and perpendicular to the shock direction almost keep constant during the tensile process. Based on constant radial velocities of vertices, we have derived a model of void growth which explains the constant void growth rate well.
Keywords:nano-void  molecular dynamics  shock loading  dislocation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号