首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of the linking chain length on the recombination kinetics of covalently bonded triplet radical pairs and magnetic field effects
Authors:Shafirovich  V Ya  Levin  P P
Institution:(1) N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 117977 Moscow, Russian Federation
Abstract:Nanosecond laser flash photolysis technique is used to study the formation and decay kinetics of covalently linked triplet radical pairs (RP) formed after photoinduced electron transfer in the series of 21 zinc porphyrin—chain—viologen (Pph—Spn—Vi2+) dyads, where the number of atoms (n) in the chain increases from 2 to 138. In poorly viscous polar solvents (acetone, CHCl3—CH3OH (1 : 1) mixture), the dependence of the rate constant of RP formation on n can be described by the equation k e = k e 0 n –a at k e 0 = 2.95·108 s–1 anda = 0.8. In the zero magnetic field, the RP recombination rate constant (k r(B = 0)) is significantly lower than k e and ranges from 0.7·106 to 8·106 s–1. The dependence of k r(B = 0) on n is extreme. The dependence k r(B = 0) reaches a maximum at n = 20. In the strong magnetic field (B = 0.21 T), the significant retardation of triplet RP recombination is observed. The chain length has an insignificant effect on k r(B = 0.21 T), which ranges from 0.3·106 to 0.9·106 s–1. The regularities found are discussed in terms of the interplay of molecular and spin dynamics.
Keywords:laser photolysis  porphyrin  viologen  magnetic field effect  electron transfer  triplet radical pair
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号