首页 | 本学科首页   官方微博 | 高级检索  
     


Determination of IGF-1 and IGF-2, their degradation products and synthetic analogues in urine by LC-MS/MS
Authors:Thomas Andreas  Kohler Maxie  Schänzer Wilhelm  Delahaut Philippe  Thevis Mario
Affiliation:Institute of Biochemistry/Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany. a.thomas@biochem.dshs-koeln.de
Abstract:Peptide analysis in doping controls by means of nano-UPLC coupled high resolution/high mass accuracy mass spectrometry provides the state-of-the-art technique in modern sports drug testing. The present study describes a recent application of this technique for the qualitative determination of different urinary insulin-like growth factor (IGF) related peptides. After simultaneous isolation by solid phase extraction and magnetic particle-based immunoaffinity purification, target analytes (IGF-1, IGF-2, Des1-3-IGF-1, R(3)-IGF-1 and longR(3)-IGF-1) were separated by nano-liquid chromatography prior to mass spectrometric detection. Endogenously produced IGF-1 and IGF-2, as well as the degradation product Des1-3-IGF-1, were frequently detected in urine samples from healthy volunteers in a concentration range of 20-400 pg mL(-1). The impact of IGF binding proteins (IGFBPs), being also present in urine, was potentially estimated by an additional ultrafiltration step in the sample preparation procedure. The synthetic analogue longR(3)-IGF-1, which is assumed to be subject to misuse by cheating athletes, was also analysed and detected in fortified urine samples. Besides the intact molecule, an N-terminally truncated degradation product Des1-10-longR(3)-IGF-1 was identified as the more stable target for doping controls using urine samples. The method was validated for qualitative purposes considering the parameters specificity, limit of detection (20-50 pg mL(-1)), recovery (10-35%), precision (<20%), linearity, robustness and stability.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号