首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid
Authors:Le-Ping Zhou  George P Peterson  Minani Yoda  Bu-Xuan Wang
Institution:1. School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR, 97330, USA
Abstract:The continuous synthesis of nickel nanoparticles (NiNPs) in a static microchannel T-mixer by the reduction of NiCl2·6H2O in the presence of ethylene glycol without a stabilizing/capping agent was investigated. The nanoparticles were formed in accordance with the modified polyol process with hydrazine used as a reducing agent and NaOH as a catalyst for nanoparticle formation. The reaction mechanism for NiNP formation was investigated in batch with the help of Fourier transform infrared spectroscopy and X-ray diffraction (XRD) techniques. Parameters were found for reducing reaction times from 60 to 1?min. The effects of temperature (60?C120?°C) and NaOH concentration (0.1 and 0.5?M) on batch-processed particle characteristics were also studied using XRD, transmission electron microscope and electron microprobe analysis. Average particle size was reduced from 9.2?±?2.9 to 5.4?±?0.9?nm at higher temperature and NaOH concentration. Adaptation of this chemistry to a static microchannel T-mixer for continuous synthesis resulted in smooth, spherical particles. Increases in the reaction temperature from 120 to 130?°C resulted in a narrow size distribution of 5.3?±?1?nm and also resulted in magnetic properties of 5.1?emu/g (saturation magnetization), 1.1?emu/g (remanent magnetization), and 62?Oe (coercivity).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号