首页 | 本学科首页   官方微博 | 高级检索  
     


A Fourier (k-) space design approach for controllable photonic band and localization states in aperiodic lattices
Authors:Subhasish Chakraborty   Michael C. Parker  Robert J. Mears
Affiliation:

aMicroelectronics Research Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road, Cambridge CB3 0HE, UK

bFujitsu Laboratories of Europe Ltd., Columba House, Adastral Park, Ipswich IP5 3RE, UK

cPembroke College, Trumpington Street, Cambridge CB2 1RF, UK

Abstract:In this paper we present a systematic study of photonic bandgap engineering using aperiodic lattices (ALs). Up to now ALs have tended to be defined by specific formulae (e.g. Fibonacci, Cantor), and theories have neglected other useful ALs along with the vast majority of non-useful (random) ALs. Here, we present a practical and efficient Fourier space-based general theory to identify all those ALs having useful band properties, which are characterized by well-defined Fourier (i.e. lattice momentum) components. Direct control of field localization comes via control of the Parseval strength competition between the different Fourier components characterizing a lattice. Real-space optimization of ALs tends to be computationally demanding. However, via our Fourier space-based simulated annealing inverse optimization algorithm, we efficiently tailor the relative strength of the AL Fourier components for precise control of photonic band and localization properties.
Keywords:Aperiodic lattice   Photonic bandgap   Localization   Digital signal processing   Fourier transform   Inverse optimization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号