首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of nanosilica on thermal oxidative degradation of SBR
Authors:Lili Guo  Guangsu Huang  Jing Zheng  Guangxian Li
Institution:1. State Key Lab of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
Abstract:The effect of silica content on thermal oxidative stability of styrene–butadiene rubber (SBR)/silica composites has been studied. Morphologies of silica in SBR with different contents are investigated by scanning electron microscopy, which indicates that silica can well disperse in SBR matrix below the content of 40 %, otherwise aggregates or agglomerates will generate. Composites with around 40 % silica content show excellent mechanical properties and retention ratios after aging at 85 °C for 6 days. The values of activation energy (E a) of pure SBR and its composites are calculated by Kissinger and Flynn–Wall–Ozawa methods based on thermogravimetric (TG) results, which suggests that composite with about 20 % silica has minimum E a, and composite with 30–40 % silica has maximum E a. According to TG curves, it is found that silica can suppress the formation of char leading to decline in stability to some extent. On the other side, silica also has positive effect on improving thermal stability of the matrix as filler. Thus, the SBR/silica composites with silica content of 30–40 % can possess both excellent resistance to thermal oxidative degradation and superior mechanical properties.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号