首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An enthalpic scale of hydrogen-bond basicity. 3. Ammonia, primary, secondary, and tertiary amines
Authors:Graton Jérôme  Berthelot Michel  Besseau François  Laurence Christian
Institution:Laboratoire de Spectrochimie et Modélisation, EA 1149, FR CNRS 2465, Faculté des Sciences et des Techniques, Université de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes, Cedex 3, France. Jerome.Graton@univ-nantes.fr
Abstract:A reliable enthalpic scale of hydrogen-bond acceptor strength (basicity) is built for aliphatic amines by means of a new infrared method, from the temperature variation of hydrogen-bond equilibrium constants. Enthalpies of hydrogen bonding to a reference hydrogen-bond acceptor, 4-fluorophenol, have been determined in CCl4 and/or C2Cl4 for ammonia and 68 primary, secondary, and tertiary amines. The scale spans from -23.8 kJ mol(-1) for i-Pr2NCH(Et)2 to -39.4 kJ mol(-1) for Et3N. This large variation is mainly explained by the basicity-enhancing electronic effects of alkyl groups, which can be overcompensated by dramatic basicity-decreasing steric effects. Relationships between DeltaH degrees and the change in electronic energy or the infrared shift of the OH stretching upon hydrogen bonding are studied and found useful in the prediction of the hydrogen bond enthalpies of amines with several hydrogen-bond acceptor sites. A careful statistical analysis of the enthalpy-entropy relationship shows an isoentropic tendency. The entropies of 65% of hydrogen-bonding reactions between aliphatic amines and 4-fluorophenol have a mean value of -55.1 +/- 4.2 J K(-1) mol(-1). Amines excluded from the isoentropic set are mainly severely hindered ones. The hydrogen-bond enthalpic scale can be useful in measuring the electrostatic character of Lewis bases.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号