首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A High-Order Discontinuous Galerkin Method for the Two-Dimensional Time-Domain Maxwell's Equations on Curved Mesh
Authors:Hongqiang Lu  Yida Xu  Yukun Gao  Wanglong Qin & Qiang Sun
Abstract:In this paper, a DG (Discontinuous Galerkin) method which has been widely employed in CFD (Computational Fluid Dynamics) is used to solve the two-dimensional time-domain Maxwell's equations for complex geometries on unstructured mesh. The element interfaces on solid boundary are treated in both curved way and straight way. Numerical tests are performed for both benchmark problems and complex cases with varying orders on a series of grids, where the high-order convergence in accuracy can be observed. Both the curved and the straight solid boundary implementation can give accurate RCS (Radar Cross-Section) results with sufficiently small mesh size, but the curved solid boundary implementation can significantly improve the accuracy when using relatively large mesh size. More importantly, this CFD-based high-order DG method for the Maxwell's equations is very suitable for complex geometries.
Keywords:
点击此处可从《advances in applied mathematics and mechanics.》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号