首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improved Energy Conversion Efficiency of ZnO/Polythiophene Solar Cell in Ga-Doped ZnO Nanorod Array Photoanode
Authors:WU Jie  LIU Huanhuan  YUAN Long  HOU Changmin
Institution:State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
Abstract:We reported the fabrication and doping effect of Ga-doped ZnO nanorods/electropolymerized polythio-phene(e-PT) hybrid photovoltaic(h-PV) devices. Ga-Doped ZnO nanorod array photoanode devices were fabricated via hydrothermally growing nanorods on sol-gel spin-coating ZnO seed layer, and then the nanorod array was immersed into a thiophene solution to yield a thin polythiophene film by electrochemically polymerization. Afterwards, a thin layer of Al was deposited on the surface of polythiophene to make an electrode for photovoltaic measurement. The ZnO nanorods with different Ga-doping contents were characterized by means of X-ray diffraction(XRD), scanning electron micrograph(SEM) and X-ray photoelectron spectroscopy(XPS). Photovoltaic J-V characterization was performed on the e-PT/ZnO bilayer and bulk heterojunction(BHJ) devices. Though the unsubstituted polythiophene is not an ideal polymer material for solar cells with high power conversion efficiency, it is a sound model for the study on the effect of dopant in hybrid materials. The results indicate that doping Ga can substantially improve the power conversion efficiency of the ZnO-polythiophene solar cell.
Keywords:Solar cell  Energy conversion  Ga-Doped ZnO  
点击此处可从《高等学校化学研究》浏览原始摘要信息
点击此处可从《高等学校化学研究》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号