首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A guide to Sonogashira cross-coupling reactions: the influence of substituents in aryl bromides, acetylenes, and phosphines
Authors:Schilz Marc  Plenio Herbert
Institution:Organometallic Chemistry, Fachbereich Chemie, Petersenstrasse 18, Technische Universit?t Darmstadt, 64287 Darmstadt, Germany.
Abstract:The conversion-time data for 168 different Pd/Cu-catalyzed Sonogashira cross-coupling reactions of five arylacetylenes (phenylacetylene; 1-ethynyl-2-ethylbenzene; 1-ethynyl-2,4,6-R(3)-benzene (R = Me, Et, i-Pr)) and Me(3)SiCCH with seven aryl bromides (three 2-R-bromobenzenes (R = Me, Et, i-Pr); 2,6-Me(2)-bromobenzene and three 2,4,6-R(3)-bromobenzenes (R = Me, Et, i-Pr)) with four different phosphines (P-t-Bu(3), t-Bu(2)PCy, t-BuPCy(2), PCy(3)) were determined using quantitative gas chromatography. The stereoelectronic properties of the substituents in the aryl bromides, acetylenes, and phosphines were correlated with the performance in Sonogashira reactions. It was found that the nature of the most active Pd/PR(3) complex for a Sonogashira transformation is primarily determined by the steric bulk of the acetylene; ideal catalysts are: Pd/P-t-Bu(3) or Pd/t-Bu(2)PCy for sterically undemanding phenylacetylene, Pd/t-BuPCy(2) for 2- and 2,6-substituted arylacetylenes or Me(3)SiCCH and Pd/PCy(3) for extremely bulky acetylenes and aryl bromides. Electron-rich and sterically demanding aryl bromides with substituents in the 2- or the 2,6-position require larger amounts of catalyst than 4-substituted aryl bromides. The synthesis of tolanes with bulky groups at one of the two aryl rings is best done by placing the steric bulk at the arylacetylene, which is also the best place for electron-withdrawing substituents.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号