首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Convergence predictions for aeroelastic calculations of tuned and mistuned bladed disks
Authors:Z He  BI Epureanu  C Pierre
Institution:aDepartment of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48109-2125, USA;bFaculty of Engineering, McGill University, 817 Sherbrooke Street, Montreal, Que., Canada H3A-2K6
Abstract:Mistuning changes the dynamics of bladed disks significantly. Frequency domain methods for predicting the dynamics of mistuned bladed disks are typically based on iterative aeroelastic calculations. Converged aerodynamic stiffness matrices are required for accurate aeroelastic results of eigenvalue and forced response problems. The tremendous computation time needed for each aerodynamic iteration would greatly benefit from a fast method of predicting the number of iterations needed for converged results. A new hybrid technique is proposed to predict the convergence history based on several critical ratios and by approximating as linear the relation between the aerodynamic force and the complex frequencies (eigenvalues) of the system. The new technique is hybrid in that it uses a combined theoretical and stochastic/computational approach. The dynamics of an industrial bladed disk is investigated, and the predicted convergence histories are shown to match the actual results very well. Monte Carlo simulations using the new hybrid technique show that the aerodynamic ratio and the aerodynamic gradient ratio are the two most important factors affecting the convergence history.
Keywords:Aeroelasticity  Turbomachinery  Bladed disks  Iterative methods  CFD
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号