首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structure and magnetic properties of a copper(II) compound with synanti carboxylato- and linear Cu–Cl–Cu chloro-bridges
Authors:Bogumiła Żurowska  Jerzy MrozińskiZbigniew Ciunik
Institution:Faculty of Chemistry, University of Wroclaw, 50383 Wroclaw, Poland
Abstract:The copper(II) polymer Cu(2-qic)Cl (2-qic = quinoline-2-carboxylate) was synthesized and then characterized by X-ray crystal structure determination, spectroscopic and magnetic studies. The crystal structure consists of copper(II) ions with two different chromophores: four-coordinated in a square-planar geometry and five-coordinated in an environment between square-pyramidal and trigonal-bipyramidal. The copper ions are bridged sequentially through the carboxylate groups in a synanti conformation, forming an infinite one-dimensional zigzag chain with two alternating non-equivalent copper(II) chromophores. The chloride atom acts as a single chloro-bridge link to adjacent chains, forming a ribbon type structure (1D). The variable-temperature (1.8–300 K) magnetic susceptibility data of the complex were interpreted with the dimer law using the molecular field approximation. The results obtained indicate a very weak ferromagnetic (J2 = 0.37 cm−1) interchain interaction through the synanti carboxylate bridge. A relatively strong antiferromagnetic interaction, transmitted through the chloro-bridge with an exchange coupling of J1 = −57.0 cm−1, dominates the magnetic properties of this complex. The magnitude and the nature of the exchange coupling are explained on the basis of the structural results.
Keywords:Copper  Quinolinecarboxylate  Carboxylate bridge  Chloride bridge  Magnetism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号