首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis,spectral, magnetic,electrochemical and kinetic studies of copper(II), nickel(II) and zinc(II) acetate complexes derived from phenol based ‘end-off’ ligands: Effect of p-substituents
Authors:K. Shanmuga Bharathi  S. SreedaranA. Kalilur Rahiman  K. RajeshV. Narayanan
Affiliation:Department of Inorganic Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai 600 025, India
Abstract:A new class of symmetric, end-off, N-methyl piperazine armed binucleating ligands 2,6-bis(4-methyl piperazin-1-yl-methyl)-4-acetyl phenol (HL1) and 2,6-bis[(4-methyl piperazin-1-yl-methyl)]-(4-methylcarboxy) phenol (HL2) were synthesized by the Mannich reaction. Their mononuclear and binuclear Cu(II), Ni(II) and Zn(II) complexes have been synthesized. These complexes were characterized by elemental analysis, infra-red and electronic spectral analysis. In the electronic spectra, the lower electron withdrawing nature of the C(O)CH3p-substituent (HL1) compared with the C(O)OCH3p-substituent (HL2) of the phenolic ring causes a red shift in the LMCT-charge transfer band. The mononuclear Cu(II) complexes 1 and 7 have a magnetic moment value close to the spin only value with four hyperfine EPR signals. The binuclear Cu(II) complexes 4 and 10 illustrate an antiferromagnetic interaction (μeff 1.56 and 1.55 BM) at 298 K with a broad EPR signal. A variable temperature magnetic moment study of the binuclear copper(II) complexes shows that the extent of antiferromagnetic coupling increases in the order: CHO [K. Shanmuga Bharathi, A. Kalilur Rahiman, K. Rajesh, S. Sreedaran, P.G. Aravindan, D. Velmurugan, V. Narayanan, Polyhedron 25 (2006) 2859] < C(O)CH3 < C(O)OCH3 (−2J values 134 [Shanmuga Bharathi et al., mentioned above], 149 and 158 cm−1, respectively). The mononuclear Ni(II) complexes 2 and 8 are square planar and diamagnetic. The six coordinated binuclear Ni(II) complexes 5 and 11 show a magnetic moment value of 2.96 and 2.95 BM, respectively. Electrochemical studies of the complexes reveal that all the mononuclear complexes show a single irreversible one-electron transfer reduction wave and the binuclear complexes show two irreversible one-electron transfer reduction waves in the cathodic region. There is an anodic shift in the reduction of the metal centres when the electron withdrawing nature of the p-substituent of the phenolic ring increases. The catecholase activity of the mono and binuclear copper(II) complexes, using pyrocatechol as a model substrate, and the hydrolysis of 4-nitrophenyl phosphate using the mono and binuclear copper(II), nickel(II) and zinc(II) complexes as catalysts showed that the binuclear complexes have higher rate constant values than those of the corresponding mononuclear complexes. A comparison of the spectral, electrochemical and magnetic behaviour of the complexes derived from the ligands is discussed on the basis of the substituent at the para position of the phenolic ring.
Keywords:&lsquo  End-off&rsquo   ligand   Magnetic properties   Electrochemical properties   Catalytic activity   Effect of p-substituents   Mono- and binuclear metal complexes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号