首页 | 本学科首页   官方微博 | 高级检索  
     检索      


How to make a triangulation of polytopal
Authors:Simon A King
Institution:Department of Mathematics, Darmstadt University of Technology, Schlossgartenstr. 7, 64289 Darmstadt, Germany
Abstract:We introduce a numerical isomorphism invariant $p(\mathcal{T})$ for any triangulation $\mathcal{T}$ of $S^3$. Although its definition is purely topological (inspired by the bridge number of knots), $p(\mathcal{T})$ reflects the geometric properties of $\mathcal{T}$. Specifically, if $\mathcal{T}$ is polytopal or shellable, then $p(\mathcal{T})$is ``small' in the sense that we obtain a linear upper bound for $p(\mathcal{T})$ in the number $n=n(\mathcal{T})$ of tetrahedra of $\mathcal{T}$. Conversely, if $p(\mathcal{T})$ is ``small', then $\mathcal{T}$is ``almost' polytopal, since we show how to transform $\mathcal{T}$ into a polytopal triangulation by $O((p(\mathcal{T}))^2)$ local subdivisions. The minimal number of local subdivisions needed to transform $\mathcal{T}$ into a polytopal triangulation is at least $\frac{p(\mathcal{T})}{3n}-n-2$. Using our previous results The size of triangulations supporting a given link, Geometry & Topology 5 (2001), 369-398], we obtain a general upper bound for $p(\mathcal{T})$ exponential in $n^2$. We prove here by explicit constructions that there is no general subexponential upper bound for $p(\mathcal{T})$ in $n$. Thus, we obtain triangulations that are ``very far' from being polytopal. Our results yield a recognition algorithm for $S^3$ that is conceptually simpler, although somewhat slower, than the famous Rubinstein-Thompson algorithm.

Keywords:Convex polytope  dual graph  spatial graph  polytopality  bridge number  recognition of the $3$--sphere
点击此处可从《Transactions of the American Mathematical Society》浏览原始摘要信息
点击此处可从《Transactions of the American Mathematical Society》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号