首页 | 本学科首页   官方微博 | 高级检索  
     检索      


DFT-assisted design and evaluation of bifunctional copper(I) catalysts for the direct intermolecular addition of aldehydes and ketones to alkynes
Authors:Jacob D Porter  Eric Greve  Abdulmohsen Alsafran  Adam R Benoit  Sergey V Lindeman  Chris Dockendorff
Institution:Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
Abstract:Bifunctional catalysts containing discrete metal pi-acid and amine sites were designed and investigated for the direct intermolecular addition of aldehydes and ketones to unactivated alkynes. Copper(I)-based catalysts were prioritized based on intramolecular (Conia-ene type) reactions, and complexes were designed with tridentate ligands and potentially hemilabile heterocyclic spacers. The structures of the designed catalysts were computed using density functional theory (DFT), and the relative energies of putative catalytic intermediates were estimated and used to prioritize catalyst designs. Novel bifunctional precatalysts containing a thiazole spacer were synthesized via a 9-step sequence and combined with transition metals before screening for the direct addition of aldehydes and ketones to several internal and terminal alkynes. Despite the lack of desired intermolecular reactions, DFT calculations of putative catalyst intermediates appears to be a promising strategy for the design and prioritization of bifunctional catalysts for C/>C bond formation.</td>
	  </tr> 
	  <tr>
	   <td align=
Keywords:Alkenylation  copper(I)  Alkyne activation  Hybrid catalysis  Organocatalysis  Aldehyde  Ketone  Alkyne  DFT  Catalyst design
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号