1. Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy;2. Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Mangiagalli 31, 20131 Milano, Italy;3. Department of Science and Technological Innovation, Università del Piemonte Orientale “A. Avogadro”, viale T. Michel 11, 15121 Alessandria, Italy;4. Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via G. Balzaretti 9, 20133 Milano, Italy
Abstract:
This paper reports on the synthesis and physico‐chemical, mechanical, and biological characterization of two sets of poly(amidoamine) (PAA) hydrogels with potential as scaffolds for in vivo peripheral nerve regeneration. They are obtained by polyaddition of piperazine with N,N′‐methylenebis(acrylamide) or 1,4‐bis(acryloyl)piperazine with 1,2‐diaminoethane as cross‐linking agent and exhibit a combination of relevant properties, such as mechanical strength, biocompatibility, biodegradability, ability to induce adhesion and proliferation of Schwann cells (SCs) preserving their viability. Moreover, the most promising hydrogels, that is those deriving from 1,4‐bis(acryloyl)piperazine, allow the in vitro growth of the sensitive neurons of the dorsal root ganglia, thus getting around a critical point in the design of conduits for nerve regeneration.