首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gas‐phase interactions of organotin compounds with glycine
Authors:Latifa Latrous  Jeanine Tortajada  Violette Haldys  Emmanuelle Léon  Catarina Correia  Jean‐Yves Salpin
Institution:1. Laboratoire de Chimie‐Analytique et Electrochimie, Département de Chimie, Faculté des Sciences de Tunis, Campus Universitaire, , 2092 El Manar, Tunis, Tunisia;2. Université d'Evry Val d'Essonne ‐ Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement Batiment Maupertuis, Université d'Evry Val d'Essonne, Boulevard Fran?ois Mitterrand, , 91025, Evry, France;3. CNRS – UMR 8587 Boulevard Fran?ois Mitterrand, , 91025, Evry, France
Abstract:Gas‐phase interactions of organotins with glycine have been studied by combining mass spectrometry experiments and quantum calculations. Positive‐ion electrospray spectra show that the interaction of di‐ and tri‐organotins with glycine results in the formation of (R)2Sn(Gly)‐H]+and (R)3Sn(Gly)]+ ions, respectively. Di‐organotin complexes appear much more reactive than those involving tri‐organotins. (MS/MS) spectra of the (R)3Sn(Gly)]+ ions are indeed simple and only show elimination of intact glycine, generating the (R)3Sn]+ carbocation. On the other hand, MS/MS spectra of (R)2Sn(Gly)‐H]+complexes are characterized by numerous fragmentation processes. Six of them, associated with elimination of H2O, CO, H2O + CO and formation of (R)2SnOH]+ (?57 u),(R)2SnNH2]+( ?58 u) and (R)2SnH]+ (?73 u), are systematically observed. Use of labeled glycines notably concludes that the hydrogen atoms eliminated in water and H2O + CO are labile hydrogens. A similar conclusion can be made for hydrogens of (R2)SnOH]+and (R2)SnNH2]+ions. Interestingly, formation (R)2SnH]+ ions is characterized by a migration of one the α hydrogen of glycine onto the metallic center. Finally, several dissociation routes are observed and are characteristic of a given organic substituent. Calculations indicated that the interaction between organotins and glycine is mostly electrostatic. For (R)2Sn(Gly)‐H]+complexes, a preferable bidentate interaction of the type η2‐O,NH2 is observed, similar to that encountered for other metal ions. (R)3Sn]+ ions strongly stabilize the zwitterionic form of glycine, which is practically degenerate with respect to neutral glycine. In addition, the interconversion between both forms is almost barrierless. Suitable mechanisms are proposed in order to account for the most relevant fragmentation processes. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:organotins  glycine  gas‐phase reaction  mass spectrometry  ab initio calculations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号