首页 | 本学科首页   官方微博 | 高级检索  
     


Polymeric adducts of rhodium(II) tetraacetate with aliphatic diamines: natural abundance 13C and 15N CPMAS NMR investigations
Authors:Jarosław Jaźwiński  Bohdan Kamieński  Agnieszka Sadlej
Affiliation:1. Institute of Organic Chemistry, Polish Academy of Sciences, , 01‐224 Warszawa, Poland;2. Institute of Physical Chemistry, Polish Academy of Sciences, , 01‐224 Warszawa, Poland
Abstract:Complexation properties of dimeric rhodium(II) tetracarboxylates have been utilised in chemistry, spectroscopy and organic synthesis. Particularly, the combination of these rhodium salts with multifunctional ligands results in the formation of coordination polymers, and these are of interest because of their gas‐occlusion properties. In the present work, the polymeric adducts of rhodium(II) tetraacetate with flexible ligands exhibiting conformational variety, ethane‐1,2‐diamine, propane‐1,3‐diamine and their N,N′‐dimethyl‐ and N,N,N′,N′‐tetramethyl derivatives, have been investigated by means of elemental analysis, 13C CPMAS NMR, 15N CPMAS NMR and density functional theory modelling. Elemental analysis and NMR spectra indicated the axial coordination mode and regular structures of (1 : 1)n oligomeric chains in the case of adducts of ethane‐1,2‐diamine, N,N′‐dimethylethane‐1,2‐diamine N,N,N′,N′‐tetramethylethane‐1,2‐diamine and N,N,N′,N′‐tetramethylpropane‐1,3‐diamine. Propane‐1,3‐diamine and N,N′‐dimethylpropane‐1,3‐diamine tended to form heterogeneous materials, composed of oligomeric (1 : 1)n chains and the additive of dirhodium units containing equatorially bonded ligands. Experimental findings have been supported by density functional theory modelling of some hypothetical structures and gauge‐invariant atomic orbital calculations of NMR chemical shifts. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:rhodium(II) tetraacetate  diamine  13C CPMAS NMR  15N CPMAS NMR  coordination polymer  complexation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号