首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chemical shifts of phenolic monomers in solution and implications for addition and self‐condensation
Authors:Robert A Haupt  Scott Renneckar
Institution:1. Macromolecules and Interfaces Institute, 2 Davidson Hall, , Blacksburg, VA, 24061 USA;2. Department of Sustainable Biomaterials, Virginia Tech, , Blacksburg, VA, 24061 USA
Abstract:Alkali metal counter‐cations alter the electron density of phenolates in solution by electrostatic interactions. This change in electron density affects their reactivity toward formaldehyde, hydroxymethylphenols, and isocyanates during polymerization. The electronic perturbation of phenolic model compounds in the presence of alkali metal hydroxides was investigated with 13C and 1H nuclear magnetic resonance in polar solvents relative to non‐ionic controls, altering the chemical shifts of the model compounds, thus indicating changes in electron density using the chemical shift as a proxy. These shifts were attributed to Coulombic electrostatic interactions of the counter‐cation with the phenolate anion that correlated to hydrated ionic radius and solvent dielectric constants. The predicted relative reaction rates for formaldehyde addition based on electron density ranking from 13C nuclear magnetic resonance of the phenolic models was compared with the literature values. Predictions for condensation reactions of 2‐ and 4‐hydroxymethylphenol from chemical shifts were consistent with published results. The results permit predictions for the reaction of phenolic compounds for the formation of thermosetting polymeric materials. Copyright © 2012 John Wiley & Sons, Ltd.
Keywords:phenol‐formaldehyde  alkali metal hydroxides  phenolates  electronic behavior  electron density  hydrated ionic radius
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号