A numerical technique for solving fractional variational problems |
| |
Authors: | M. M. Khader A. S. Hendy |
| |
Affiliation: | Department of Mathematics, Faculty of Science, Benha University, , Benha, Egypt |
| |
Abstract: | This paper presents an accurate numerical method for solving a class of fractional variational problems (FVPs). The fractional derivative in these problems is in the Caputo sense. The proposed method is called fractional Chebyshev finite difference method. In this technique, we approximate FVPs and end up with a finite‐dimensional problem. The method is based on the combination of the useful properties of Chebyshev polynomials approximation and finite difference method. The Caputo fractional derivative is replaced by a difference quotient and the integral by a finite sum. The fractional derivative approximation using Clenshaw and Curtis formula introduced here, along with Clenshaw and Curtis procedure for the numerical integration of a non‐singular functions and the Rayleigh–Ritz method for the constrained extremum, is considered. By this method, the given problem is reduced to the problem for solving a system of algebraic equations, and by solving this system, we obtain the solution of FVPs. Special attention is given to study the convergence analysis and evaluate an error upper bound of the obtained approximate formula. Illustrative examples are included to demonstrate the validity and applicability of the proposed technique. A comparison with another method is given. Copyright © 2012 John Wiley & Sons, Ltd. |
| |
Keywords: | fractional variational problems Caputo fractional derivatives Clenshaw and Curtis formula Rayleigh– Ritz method convergence analysis |
|
|