首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The structure of crystallographic damage in GaN formed during rare earth ion implantation with and without an ultrathin AlN capping layer
Authors:F Gloux  P Ruterana  T Wojtowicz  K Lorenz  E Alves
Institution:aSIFCOM, UMR 6176, CNRS-ENSICAEN, 14050 Caen, France;bInstituto Tecnológico e Nuclear, EN10, 2686-953 Sacavém, Portugal
Abstract:The crystallographic nature of the damage created in GaN implanted by rare earth ions at 300 keV and room temperature has been investigated by transmission electron microscopy versus the fluence, from 7×1013 to 2×1016 at/cm2, using Er, Eu or Tm ions. The density of point defect clusters was seen to increase with the fluence. From about 3×1015 at/cm2, a highly disordered ‘nanocrystalline layer’ (NL) appears on the GaN surface. Its structure exhibits a mixture of voids and misoriented nanocrystallites. Basal stacking faults (BSFs) of I1, E and I2 types have been noticed from the lowest fluence, they are I1 in the majority. Their density increases and saturates when the NL is observed. Many prismatic stacking faults (PSFs) with Drum atomic configuration have been identified. The I1 BSFs are shown to propagate easily through GaN by folding from basal to prismatic planes thanks to the PSFs.When implanting through a 10 nm AlN cap, the NL threshold goes up to about 3×1016 at/cm2. The AlN cap plays a protective role against the dissociation of the GaN up to the highest fluences. The flat surface after implantation and the absence of SFs in the AlN cap indicate its high resistance to the damage formation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号