首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reaction of a low‐molecular‐weight free radical with a flexible polymer chain: Kinetic studies on the OH + poly(N‐vinylpyrrolidone) model
Authors:Nina Bartoszek  Piotr Ulański  Janusz M Rosiak
Institution:Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93‐590 Lodz, Poland
Abstract:This work addresses the issue of kinetics of diffusion‐controlled reactions of small radicals with macromolecules in solution. Attack of pulse‐generated hydroxyl radicals on poly(N‐vinylpyrrolidone)—PVP—chains of various molecular weight in water was used as the model reaction. Pulse radiolysis with spectrophotometric detection was applied to determine the rate constants by competition kinetics. The rate constant depends both on polymer concentration and on its molecular weight. In dilute solutions, a distinct dependence of the rate constant on the molecular weight is observed. In the studied range of molecular weight, the values of reaction radius, calculated using Smoluchowski equation on the basis of experimental kinetic data, are very close to the radius of gyration of polymer coils. We believe that radius of gyration, as an easily determined parameter, could possibly serve for predicting rate constants of diffusion‐controlled reactions of polymers with low‐molecular‐weight compounds in dilute solutions. With increasing polymer concentration and thus increasing spatial overlap of polymer coils the dependence of the rate constant on the molecular weight fades away, and the rate constant values increase with increasing concentration toward the value determined for low‐molecular‐weight model of PVP. Most steep increase approximately coincides with the hydrodynamic critical concentration of a given PVP sample, reflecting the change in reaction geometry from individual coils to a continuous matrix of interpenetrating chains. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 474–481, 2011
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号