首页 | 本学科首页   官方微博 | 高级检索  
     检索      


How to find an optimum cluster size through topological site properties: MoSxmodel clusters
Authors:Alexander M Silva  Itamar Borges Jr
Institution:Programa de Pós‐Gradua??o em Engenharia de Defesa and Departamento de Química, Instituto Militar de Engenharia, Pra?a General Tibúrcio, 80, Rio de Janeiro, RJ 22290‐270, Brazil
Abstract:Computational investigations in catalysis frequently use model clusters to represent realistically the catalyst and its reaction sites. Detailed knowledge of the molecular charge, thus electronic density, of a cluster would then allow physical and chemical insights of properties and can provide a procedure to establish their optimum size for catalyst studies. For this purpose, an approach is suggested to study model clusters based on the distributed multipole analysis (DMA) of molecular charge properties. After full density functional theory (DFT) geometry optimization of each cluster, DMA computed from the converged DFT one‐electron density matrix allowed the partition of the corresponding cluster charge distribution into monopole, dipole, and quadrupole moments on the atomic sites. The procedure was applied to MoS2 model clusters Mo10S18, Mo12S26, Mo16S32, Mo23S48, and Mo27S54. This analysis provided detailed features of the charge distribution of each cluster, focused on the 101 0 (Mo or metallic edge) and 1 010 (sulfur edge) active planes. Properties of the Mo27S54 cluster, including the formation of HDS active surfaces, were extensively discussed. The effect of cluster size on the site charge distribution properties of both planes was evaluated. The results showed that the Mo16S32 cluster can adequately model both active planes of real size Mo27S54. These results can guide future computational studies of MoS2 catalytic processes. Furthermore, this approach is of general applicability. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011
Keywords:DFT  MoS2  molecular charge distribution  cluster optimum size  hydrodesulfurization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号