首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ultra-broadband NMR probe: numerical and experimental study of transmission line NMR probe
Authors:Kubo Atsushi  Ichikawa Shinji
Institution:Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan. a.kubo@kuchem.kyoto-u.ac.jp
Abstract:We have reinvestigated a transmission line NMR probe first published by Lowe and co-workers in 1970s Rev. Sci. Instrum. 45 (1974) 631; 48 (1977) 268] numerically and experimentally. The probe is expected to be ultra-broadband, thus might enable new types of solid-state NMR experiments. The NMR probe consists of a coil and capacitors which are connected to the coil at regular intervals. The circuit is the same as a cascaded LC low-pass filter, except there are nonzero mutual inductances between different coil sections. We evaluated the mutual inductances by Neumann's formula and calculated the electrical characteristics of the probe as a function of a carrier frequency. We found that they were almost the same as those of a cascaded LC low-pass filter, when the inductance L of a section was estimated from the inductance of the whole coil divided by the number of the sections, and if C was set to the capacitance in a section. For example, the characteristic impedance of a transmission line coil is given by Z=(L/C)(1/2). We also calculated the magnitude and the distribution of RF magnetic field inside the probe. The magnitude of RF field decreases when the carrier frequency is increased because the phase delay between neighboring sections is proportional to the carrier frequency. For cylindrical coils, the RF field is proportional to (pinu/2nu(d))(1/2)exp(-nu/nu(d)), where the decay frequency nu(d) is determined by the dimensions of the coil. The observed carrier frequency thus must be much smaller than the decay frequency. This condition restricts the size of transmission line coils. We made a cylindrical coil for a 1H NMR probe operating below 400 MHz. It had a diameter 2.3mm and a pitch 1.2mm. Five capacitors of 6pF were connected at every three turns. The RF field strength was 40 and 60 kHz at the input RF power 100 W by a calculation and by experiments, respectively. The calculations showed that the RF field inhomogeneity along the coil axis was caused by a standing wave of current, which arose from the reflections at the coil ends. The calculation showed that the homogeneity could be improved by decreasing the pitch near the both ends and making their impedance close to that at the center.
Keywords:NMR probe  Broadband  Transmission line  RF field homogeneity
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号