首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Screened Coulomb potentials for astrophysical nuclear fusion reactions
Authors:TE Liolios
Institution:(1) European Center for Theoretical Studies in Nuclear Physics and Related Areas, Villa Tambosi, I-38050 Villazzano (TN), Italy, University of Thessaloniki, Department of Theoretical Physics, Thessaloniki 54006, Greece, Hellenic War College, BST 903, Greece, IT
Abstract:The electron-screening acceleration of laboratory fusion reactions at astrophysical energies is an unsolved problem of great importance to astrophysics. That effect is modeled here by considering the fusion of hydrogen-like atoms whose electron probability density is used in Poisson's equation in order to derive the corresponding screened Coulomb potential energy. That way atomic excitations and deformations of the fusing atoms can be taken into account. Those potentials are then treated semiclassically in order to obtain the screening (accelerating) factor of the reaction. By means of the proposed model the effect of a superstrong magnetic field on laboratory hydrogen fusion reactions is investigated here for the first time showing that, despite the considerable increase in the cross-section of the dd reaction, the pp reaction is still too slow to justify experimentation. The proposed model is finally applied on the H2 d, pH3 fusion reaction describing satisfactorily the experimental data although some ambiguity remains regarding the molecular nature of the deuteron target. Notably, the present method gives a sufficiently high screening energy for hydrogen fusion reactions so that the take-away energy of the spectator nucleus can also be taken into account. Received: 19 May 2000 / Accepted: 4 September 2000
Keywords:PACS  25  10  +s Nuclear reactions involving few-nucleon systems –  25  45  -z 2H-induced reactions
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号