首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical study of the structure and analytic potential energy function for the ground state of the PO<sub>2</sub> molecule
Authors:Zeng Hui and Zhao Jun
Institution:School of Physical Science and Technology, Yangtze University
Abstract:In this paper, the energy, equilibrium geometry, and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP, B3P86, CCSD(T), and QCISD(T) methods in conjunction with the 6-311++G(3df, 3pd) and cc-pVTZ basis sets. A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df, 3pd) method can give better energy calculation results for the PO 2 molecule. It is shown that the ground state of the PO2 molecule has C2v symmetry and its ground electronic state is X2 A1 . The equilibrium parameters of the structure are R P O = 0.1465 nm, ∠OPO = 134.96°, and the dissociation energy is Ed = 19.218 eV. The bent vibrational frequency ν 1 = 386 cm-1 , symmetric stretching frequency ν 2 = 1095 cm-1 , and asymmetric stretching frequency ν 3 = 1333 cm-1 are obtained. On the basis of atomic and molecular reaction statics, a reasonable dissociation limit for the ground state of the PO2 molecule is determined. Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory. The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.
Keywords:PO2  Murrell–Sorbie function  many-body expansion theory  potential energy curve
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号