首页 | 本学科首页   官方微博 | 高级检索  
     

Pd掺杂对Co3O4催化CH4燃烧反应的影响:密度泛函理论计算
引用本文:赵成成,赵永慧,李圣刚,孙予罕. Pd掺杂对Co3O4催化CH4燃烧反应的影响:密度泛函理论计算[J]. 催化学报, 2017, 38(5). DOI: 10.1016/S1872-2067(17)62817-1
作者姓名:赵成成  赵永慧  李圣刚  孙予罕
作者单位:1. 中国科学院上海高等研究院中国科学院低碳转化科学与工程重点实验室, 上海 201210;中国科学院大学, 北京 100049;上海科技大学物质科学与技术学院, 上海 201210;2. 中国科学院上海高等研究院中国科学院低碳转化科学与工程重点实验室,上海,201210;3. 中国科学院上海高等研究院中国科学院低碳转化科学与工程重点实验室, 上海 201210;上海科技大学物质科学与技术学院, 上海 201210
基金项目:国家自然科学基金,英国能源技术研究所.This work was supported by the National Natural Science Foundation of China,the Energy Technologies Institute LLP
摘    要:研究发现,Pd和Co3O4催化剂均可有效地催化甲烷燃烧反应,且Pd掺杂的Co3O4催化剂上甲烷反应活性优于单纯的Pd和Co3O4催化剂,可见两者存在明显的协同效应.然而由于Co3O4本身复杂的表面配位环境,相关理论模拟研究依然较少.同时,由于甲烷分子中C–H键有着非常高的键能,且该分子具有很高的对称性,导致C–H键活化往往是甲烷选择转化和完全燃烧反应中最困难的一步.由于Co3O4表面电子结构比较复杂,因此本文基于Co3O4(001)晶面的两种不同暴露面来构建和模拟Pd掺杂Co3O4表面Pd?O位点的甲烷反应活性.对于Co3O4(001)–A晶面,暴露面金属离子只有未饱和的八面体Coo,而(001)–B晶面,还有四面体Cot.由于Pd取代Cot后所形成的Pd/(001)–B面更不稳定,因而选择了较稳定的Pd替换Coo结构模型.基于第一性原理PBE+U计算的Pd/(001)表面甲烷活化能垒来探讨Pd掺杂对Co3O4表面催化活性的影响.计算表明,甲烷在Pd掺杂的(001)面上最低解离能垒为0.68 eV,明显低于在Co3O4(001)和(011)面的(分别为0.98和0.89 eV),表明Pd掺杂的(001)表面催化活性要远高于纯的Co3O4(001)和(011)表面.为了进一步理解Pd掺杂影响Co3O4表面甲烷反应活性的原因,我们计算了反应位点相关原子的Bader电荷.结果表明,当CH3δ–吸附于Pd/(001)–A面Pd位点时,Pd较(001)面上Co位点能从CH3δ–获得更多电子,这与Pd较Co有更强的氧化性一致.我们也对比了(001)–A,(001)–B,Pd/(001)–A和Pd/(001)–B在氧气分压为常压及不同温度下表面能的大小,并发现在与反应相关的温度区间(001)–A表面较(001)–B表面更为稳定,同样地Pd/(001)–A表面也较Pd/(001)–B表面更为稳定,且Pd/(001)–A表面与(001)–A表面稳定性差别不大,因此Pd单原子掺杂的(001)表面模型在热力学上较为稳定,且根据计算的能垒,(001)–A和Pd/(001)–A表面对甲烷活化的贡献最大.为了更好与实验结果对比,我们构建了简单的动力学模型,并计算了甲烷在Co3O4(001),(011)和1%,2%,3%Pd掺杂的Co3O4(001)表面的甲烷燃烧速率.计算表明即使较低量的Pd也可明显提高甲烷燃烧速率,与实验数据吻合较好,表明掺杂Pd显著增加Co3O4催化甲烷燃烧.

关 键 词:四氧化三钴  钯掺杂  甲烷燃烧  密度泛函理论计算  反应速率  碰撞理论

Effect of Pd doping on CH4 reactivity over Co3O4 catalysts from density-functional theory calculations
Abstract:Palladium oxide (PdOx) and cobalt oxide (Co3O4) are efficient catalysts for methane (CH4) combus-tion, and Pd-doped Co3O4 catalysts have been found to exhibit better catalytic activities, which sug-gest synergism between the two components. We carried out first-principles calculations at the PBE+U level to investigate the Pd-doping effect on CH4 reactivity over the Co3O4 catalyst. Because of the structural complexity of the Pd-doped Co3O4 catalyst, we built Pd-doped catalyst models using Co3O4(001) slabs with two different terminations and examined CH4 reactivity over the possible Pd?O active sites. A low energy barrier of 0.68 eV was predicted for CH4 dissociation over the more reactive Pd-doped Co3O4(001) surface, which was much lower than the 0.98 and 0.89 eV that was predicted previously over the more reactive pure Co3O4(001) and (011) surfaces, respectively. Us-ing a simple model, we predicted CH4 reaction rates over the pure Co3O4(001) and (011) surfaces, and Co3O4(001) surfaces with different amounts of Pd dopant. Our theoretical results agree well with the available experimental data, which suggests a strong synergy between the Pd dopant and the Co3O4 catalyst, and leads to a significant increase in CH4 reaction rate.
Keywords:Spinel cobalt oxide  Palladium dopant  Methane combustion  Density function theory calculation  Reaction rate  Collision theory
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号