首页 | 本学科首页   官方微博 | 高级检索  
     

采用解离的氢原子作为还原剂制备高氧还原电催化性能的Pd核@Pt壳纳米结构
引用本文:曹龙生,蒋尚峰,张耕,唐雪君,秦晓平,邵志刚,衣宝廉. 采用解离的氢原子作为还原剂制备高氧还原电催化性能的Pd核@Pt壳纳米结构[J]. 催化学报, 2017, 38(7). DOI: 10.1016/S1872-2067(17)62840-7
作者姓名:曹龙生  蒋尚峰  张耕  唐雪君  秦晓平  邵志刚  衣宝廉
作者单位:1. 中国科学院大连化学物理研究所, 辽宁大连116023;中国科学院大学, 北京100049;2. 华中农业大学理学院化学系,湖北武汉,430070;3. 中国科学院大连化学物理研究所,辽宁大连,116023
基金项目:国家重点研发计划,国家自然科学基金,自然科学基金-辽宁省联合基金(U1508202).This work was supported by the National Major Research Project,the National Natural Science Foundation of China,the Natural Science Foundation-Liaoning United Fund
摘    要:质子交换膜燃料电池(PEMFC)作为一种清洁、高效的能源转化装置,已经备受学术界与产业界的关注.然而,高活性、高稳定性与低成本的铂基阴极氧还原(ORR)电催化剂的缺乏,严重限制PEMFC的大规模商业化应用.为提高贵金属铂的电催化性能,核壳纳米结构的研究受到广范关注.然而,核壳纳米结构的制备过程通常需要采用有机前驱体、表面活性剂与较高的反应温度,导致大多核壳结构制备方法的大规模应用受到限制.我们在室温下无表面活性剂与高沸点溶剂的参与下,通过钯表面吸附的解离的氢原子来还原K2PtCl4,得到Pd核@Pt壳纳米结构.通过改变加入K2PtCl4的量,可以成功控制壳的厚度;通过透射电子显微镜(TEM)观察得知,我们制备了铂壳厚度分别为0.45,0.75,0.9 nm的核壳结构.Pd核@Pt壳纳米结构的良好的纳米晶体结构与外延生长模式,通过高分辨透射电子显微镜(HRTEM)与能量色散谱仪(EDS)得到证实.同时,所制备Pd核@Pt壳样品的核壳结构通过高角环形暗场-扫描透射-元素分布(HAADF-STEM-EDX)表征方法,得到证实.X射线粉末衍射(XRD)表征证实,样品Pd核@Pt壳并无单独的Pd或Pt衍射峰出现,而是表现出良好的同种晶相结构;相对于单质Pt,样品中Pd核的存在导致Pd核@Pt壳核壳结构表现出一定程度的晶格紧缩.X射线光电子能谱(XPS)表明,钯核的存在导致铂壳的电子结合能增大,并且当铂壳厚度增大到一定程度后,核壳结构引起的电子效应维持不变.通过XPS分峰拟合可知,Pd核@Pt壳结构中零价态的铂含量均在80%以上,并且零价态的铂含量随着铂壳层厚度的增大而增大.采用电感耦合等离子体(ICP)与XPS,发现铂的表面富集现象,并且铂表面富集现象随着铂壳层厚度的增大而增大.在半电池中,经过循环伏安扫描活化,Pd核@Pt壳表现出明显的铂的氢吸附与脱附特征峰,再次证明了铂壳层的成功包覆.Pd核@Pt壳纳米颗粒表现出优于Pt/C(JM)的面积比活性、质量比活性及电化学稳定性.核壳结构的良好的ORR电催化性能,来源于催化剂表面含氧物种吸附强度的减弱;上述现象归因于钯核与铂壳之间的电子效应与晶格应力效应.此处简易、清洁的核壳结构制备方法也可以用来在温和条件下制备Ni核@Pt壳等核壳结构.

关 键 词:Pd核@Pt壳  解离氢  氧还原  电催化  核壳

Fabrication of a highly dispersed Pdcore@Ptshell electrocatalyst for the oxygen reduction reaction
Longsheng Cao,Shangfeng Jiang,Geng Zhang,Xuejun Tang,Xiaoping Qin,Zhigang Shao,Baolian Yi. Fabrication of a highly dispersed Pdcore@Ptshell electrocatalyst for the oxygen reduction reaction[J]. Chinese Journal of Catalysis, 2017, 38(7). DOI: 10.1016/S1872-2067(17)62840-7
Authors:Longsheng Cao  Shangfeng Jiang  Geng Zhang  Xuejun Tang  Xiaoping Qin  Zhigang Shao  Baolian Yi
Abstract:Core-shell nanostructures have been widely investigated to improve the electrocatalytic perfor-mance of platinum. However, organic precursors, surfactants or high temperature are usually nec-essary during the preparation procedure. Unfortunately, these requirements limit the application of these methods on a large scale. Herein, a Pdcore@Ptshel nanostructure was fabricated through the reduction of K2PtCl4 by dissociated hydrogen at room temperature without the assistance of either a surfactant or a high-boiling point solvent. The shell thickness of this nanostructure was successfully controlled by varying the amount of K2PtCl4;core-shell nanoparticles with a shell thickness of 0.45, 0.75 and 0.90 nm were obtained, as determined by TEM. The remarkable crystallinity and epitaxial growth of the Pdcore@Ptshel nanostructure were revealed by HRTEM and EDS. According to ICP and XPS, surface segregation of Pt was established. The impressive ORR performance was attributed to the weak adsorption strength of the OHads species, which resulted from the electron transfer impact between the Pdcore and Ptshel . The facile and clean preparation method can be used to prepare other core-shell nanostructures under a mild atmosphere.
Keywords:Pdcore@Ptshel  Dissociated hydrogen  Oxygen reduction  Electrocatalysis  Core shell
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号