首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling of droplet entrainment phenomena at a quench front
Authors:M J Holowach  L E Hochreiter  J H Mahaffy  F B Cheung  
Institution:

Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, 137 Reber Building, University Park, PA 16802-1412, USA

Abstract:The phenomena of droplet entrainment at a quench front is of practical importance as a clear understanding of the underlying mechanisms required to effectively calculate the interfacial mass, momentum, and energy transfer, which characterizes nuclear reactor safety, system design, analysis, and performance. The present study proposes a model for droplet entrainment at a quench front that is based on the best-understood physics related to the Lagrangian quenching phenomenon characteristic to light water reactor (LWR) safety analysis. The model is based on a film boundary layer and stability analysis that attempts to match the characteristic time and length scales of the entrainment phenomenon. This model has been developed such that direct implementation can be made into any two-phase flow simulation code with a three-field (continuous liquid, droplet, and vapor) flow model. Comparisons with integrated transient test data independent of those used for model development have been performed to verify the applicability of the proposed model for the prediction of the entrainment rate of liquid droplets at a quench front under typical reflood conditions envisioned in LWRs.
Keywords:Droplet entrainment  Quench front  Safety analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号