首页 | 本学科首页   官方微博 | 高级检索  
     


Structural changes in metallothionein isoforms revealed by capillary electrophoresis and Brdicka reaction
Authors:Ryvolova Marketa  Hynek David  Skutkova Helena  Adam Vojtech  Provaznik Ivo  Kizek Rene
Affiliation:Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic.
Abstract:Metallothionein (MT) as a potential cancer marker is at the center of interest and its properties, functions and behavior under various conditions is intensively studied. In the present study, two major mammalian MT isoforms (MT‐1 and MT‐2) were separated using capillary electrophoresis (CE) coupled with UV detector in order to describe their basic behavior. Under the optimized conditions, the separation of both isoforms was enabled as well as estimation of detection limits as subunits and units of ng per μL for MT‐2 and MT‐1, respectively. Further, the effects of thermal treatment and the presence of denaturing agent such as urea on MT‐1 and MT‐2 isoforms were studied by CE‐UV. Thermal treatment caused an increase in the signals of both isoforms. A new parameter called precipitation rate has been defined based on this finding. This parameter can be expressed as a slope of the linear regression of the time dependency curve recalculated on the MT concentration. The thermal precipitation rate for MT‐1 and MT‐2 was determined as 1.1 and 0.9 ng of MT/min, respectively. The chemical precipitation rate calculated from the linear regression for both isoforms provided the same value of 0.25 ng of MT/min. The results were confirmed by manual spectrometric measurements and by differential pulse voltammetry Brdicka reaction. Based on these results, a model of MT behavior under the conditions studied was suggested.
Keywords:Brdicka reaction  Cancer  CE  Denaturation  Electrochemistry  Isoforms  Metallothionein
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号