首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Intratympanic manganese administration revealed sound intensity and frequency dependent functional activity in rat auditory pathway
Authors:Seong-Uk Jin  Jae-Jun Lee  Kwan Soo Hong  Mun Han  Jang-Woo Park  Hui Joong Lee  Sangheun Lee  Kyu-yup Lee  Kyung Min Shin  Jin Ho Cho  Chaejoon Cheong  Yongmin Chang
Institution:1. Department of Medical & Biological Engineering, Kyungpook National University, Dongduk-Ro, Jung-Gu, Daegu, Korea;2. Division of Magnetic Resonance Research, Korea Basic Science Institute, Yangcheong-ri, Ochang-eup, Cheongwon, Republic of Korea;3. Department of Radiology, College of Medicine, Kyungpook National University, Dongduk-Ro, Jung-Gu, Daegu, Korea;4. Department of Otorhinolaryngology, College of Medicine, Kyungpook National University, Dongduk-Ro, Jung-Gu, Daegu, Korea;5. Department of Electronic Engineering, College of IT Engineering, Kyungpook National University, Dongduk-Ro, Jung-Gu, Daegu, Korea;6. Department of Molecular Medicine, College of Medicine, Kyungpook National University, Dongduk-Ro, Jung-Gu, Daegu, Korea
Abstract:The cochlear plays a vital role in the sense and sensitivity of hearing; however, there is currently a lack of knowledge regarding the relationships between mechanical transduction of sound at different intensities and frequencies in the cochlear and the neurochemical processes that lead to neuronal responses in the central auditory system. In the current study, we introduced manganese-enhanced MRI (MEMRI), a convenient in vivo imaging method, for investigation of how sound, at different intensities and frequencies, is propagated from the cochlear to the central auditory system. Using MEMRI with intratympanic administration, we demonstrated differential manganese signal enhancements according to sound intensity and frequencies in the ascending auditory pathway of the rat after administration ofintratympanicMnCl2.Compared to signal enhancement without explicit sound stimuli, auditory structures in the ascending auditory pathway showed stronger signal enhancement in rats who received sound stimuli of 10 and 40 kHz. In addition, signal enhancement with a stimulation frequency of 40 kHz was stronger than that with 10 kHz. Therefore, the results of this study seem to suggest that, in order to achieve an effective response to high sound intensity or frequency, more firing of auditory neurons, or firing of many auditory neurons together for the pooled neural activity is needed.
Keywords:MEMRI  Sound intensity  Sound frequency  Auditory pathway
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号