首页 | 本学科首页   官方微博 | 高级检索  
     


Quantum limit in a quasi-one-dimensional conductor in a high tilted magnetic field
Authors:A. G. Lebed
Affiliation:1.Department of Physics,University of Arizona,Tucson,USA;2.Landau Institute for Theoretical Physics,Russian Academy of Sciences,Moscow,Russia
Abstract:Recently, we have suggested Fermi-liquid–non-Fermi-liquid angular crossovers that may exist in quasi-one-dimensional (Q1D) conductors in high tilted magnetic fields (see A. G. Lebed, Phys. Rev. Lett. 115, 157001 (2015)). All calculations in the Letter were done by using the quasiclassical Peierls substitution method, whose applicability in high magnetic fields was questionable. Here, we solve a fully quantum mechanical problem and show that the main qualitative conclusions of the work cited above are correct. In particular, we show that in high magnetic fields, applied along one of the two main crystallographic axis, we have 2D electron spectrum, whereas, for directions of high magnetic fields far from the axes, we have 1D electron spectrum. The latter is known to promote non-Fermi-liquid properties. As a result, we expect the existence of Fermi-liquid–non-Fermi-liquid angular crossovers or phase transitions. Electronic parameters of Q1D conductor (Per)2Pt(mnt)2 show that such transitions can appear in feasible high magnetic fields of the order of H ? 20–25 T.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号