(Meth)acrylate vinyl ester hybrid polymerizations |
| |
Authors: | Tai Yeon Lee Neil B. Cramer Charles E. Hoyle Jeffrey W. Stansbury Christopher N. Bowman |
| |
Affiliation: | 1. Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309;2. Department of Polymer Science, University of Southern Mississippi, Hattiesburg, Mississippi 39406;3. Biomaterials Research Center, School of Dentistry, University of Colorado Health Sciences Center, Aurora, Colorado 80045 |
| |
Abstract: | In this study, vinyl ester monomers were synthesized by an amine catalyzed Michael addition reaction between a multifunctional thiol and the acrylate double bond of vinyl acrylate. The copolymerization behavior of both methacrylate/vinyl ester and acrylate/vinyl ester systems was studied with near‐infrared spectroscopy. In acrylate/vinyl ester systems, the acrylate groups polymerize faster than the vinyl ester groups resulting in an overall conversion of 80% for acrylate double bonds in the acrylate/vinyl ester system relative to only 50% in the bulk acrylate system. In the methacrylate/vinyl ester systems, the difference in reactivity is even more pronounced resulting in two distinguishable polymerization regimes, one dominated by methacrylate polymerization and a second dominated by vinyl ester polymerization. A faster polymerization rate and higher overall conversion of the methacrylate double bonds is thus achieved relative to polymerization of the pure methacrylate system. The methacrylate conversion in the methacrylate/vinyl ester system is near 100% compared to only ~60% in the pure methacrylate system. Utilizing hydrophilic vinyl ester and hydrophobic methacrylate monomers, polymerization‐induced phase separation is observed. The phase separated domain size is in the order of ~1 μm under the polymerization conditions. The phase separated domains become larger and more distinct with slower polymerization and correspondingly increased time for diffusion. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2509–2517, 2009 |
| |
Keywords: | FT‐IR phase separation photopolymerization |
|
|