首页 | 本学科首页   官方微博 | 高级检索  
     


A new method for using 18O to trace ozone deposition
Authors:Jens‐Arne Subke  Sylvia Toet  David D'Haese  Zoe Crossman  Lisa D. Emberson  Jeremy D. Barnes  Mike R. Ashmore  Richard P. Evershed  Phil Ineson
Affiliation:1. Stockholm Environment Institute, University of York, York YO10 5DD, UK;2. Environment Department, University of York, York YO10 5DD, UK;3. School of Biology and Psychology, Devonshire Building, Newcastle University, Newcastle NE1 7RU, UK;4. Organic Geochemistry Unit, Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
Abstract:Isotopically labelled ozone (18O3) is an ideal tool to study the deposition of O3 to plants and soil, but no studies have made use of it due to the technical difficulties in producing isotopically enriched ozone. For 18O3 to be used in fumigation experiments, it has to be purified and stored safely prior to fumigations, to ensure that the label is present predominantly in the form of O3, and to make efficient use of isotopically highly enriched oxygen. We present a simple apparatus that allows for the safe generation, purification, storage, and release of 18O3. Following the purification and release of O3, about half (by volume) of the 18O is present in the form of O3. This means that for a given release of 18O3 into the fumigation system, a roughly identical volume of 18O2 is released. However, the small volume of this concurrent 18O2 release (100 nmol mol?1 in our experiment) results in only a minor shift of the much larger atmospheric oxygen pool, with no detectable consequence for the isotopic enrichment of either soil or plant materials. We demonstrate here the feasibility of using 18O as an isotopic tracer in O3 fumigations by exposing dry soil to 100 nmol mol?1 18O3 for periods ranging from 1 to 11 h. The 18O tracer accumulation in soil samples is measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS), and the results show a linear increase in 18O/16O isotope ratio over time, with significant differences detectable after 1 h of exposure. The apparatus is adapted for use with fumigation chambers sustaining flow rates of 1 m3 min?1 for up to 12 h, but simple modifications now allow larger quantities of O3 to be stored and continuously released (e.g. for use with open‐top chambers or FACE facilities). Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号