首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ethylene–acrylic acid copolymer induced electrical conductivity improvements and dynamic rheological behavior changes of polypropylene/carbon black composites
Authors:Guangshun Chen  Bo Yang  Shaoyun Guo
Institution:1. The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China;2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract:The experimental data reveal that the addition of ethylene–acrylic acid copolymer (EAA) into carbon black (CB)/polypropylene (PP) composites can improve the electrical conductivity of CB/PP composites by two to six orders of magnitude at a comparatively low CB content (φ), and when φ = 2.5 vol %, 60/40 of PP/EAA is an optimum for electrical conductivity improvement. The dynamic rheological data show that with increasing φ there are apparent rheological percolations for CB/PP composites. A modified Kerner–Nielson equation can be used to describe the correlation between electrical percolation and dynamic viscoelastic percolation. The addition of EAA into CB/PP composites leads to apparent changes in dynamic rheological behaviors. When φ = 2.5 vol %, a rheological percolation appears in CB/PP/EAA (CPE) composites with increasing EAA content. The similar rheological behaviors correspond to the similar morphological structures for CPE composites with φ = 5.0 vol %. The appearance of bumps in the van‐Gurp–Palmen plots corresponds to the formation of network structure in CB/PP and CPE composites, and the more perfect the networks, the higher the amplitude of the bumps. All data indicate that the van‐Gurp–Palmen plot is sensitive to the formation of filler particle networks or cocontinuous phase which spans the whole composite. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1762–1771, 2009
Keywords:composites  conduction network  conductive carbon black  dynamic rheology  EAA  percolation  poly(propylene)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号