首页 | 本学科首页   官方微博 | 高级检索  
     


Backward perturbation analysis for scaled total least‐squares problems
Authors:X.‐W. Chang  D. Titley‐Peloquin
Affiliation:School of Comptuer Science, McGill University, 3480 University Street, McConnell Engineering Building, Room 318, Montreal, Canada H3A 2A7
Abstract:The scaled total least‐squares (STLS) method unifies the ordinary least‐squares (OLS), the total least‐squares (TLS), and the data least‐squares (DLS) methods. In this paper we perform a backward perturbation analysis of the STLS problem. This also unifies the backward perturbation analyses of the OLS, TLS and DLS problems. We derive an expression for an extended minimal backward error of the STLS problem. This is an asymptotically tight lower bound on the true minimal backward error. If the given approximate solution is close enough to the true STLS solution (as is the goal in practice), then the extended minimal backward error is in fact the minimal backward error. Since the extended minimal backward error is expensive to compute directly, we present a lower bound on it as well as an asymptotic estimate for it, both of which can be computed or estimated more efficiently. Our numerical examples suggest that the lower bound gives good order of magnitude approximations, while the asymptotic estimate is an excellent estimate. We show how to use our results to easily obtain the corresponding results for the OLS and DLS problems in the literature. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:scaled total least squares  backward perturbation analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号