首页 | 本学科首页   官方微博 | 高级检索  
     

选择性激光烧结成型件密度的支持向量回归预测
引用本文:蔡从中,裴军芳,温玉锋,朱星键,肖婷婷. 选择性激光烧结成型件密度的支持向量回归预测[J]. 物理学报, 2009, 58(13): 8-S14
作者姓名:蔡从中  裴军芳  温玉锋  朱星键  肖婷婷
作者单位:重庆大学应用物理系,重庆 400044
基金项目:教育部新世纪优秀人才支持计划(批准号:NCET-07-0903)、教育部留学回国人员科研启动基金(批准号:2008101-1)、重庆市自然科学基金(批准号:CSTC2006BB5240)和国家大学生创新性实验计划(批准号:CQUCX-G-2007-016)资助的课题.
摘    要:根据不同工艺参数(层厚、扫描间距、激光功率、扫描速度、加工环境温度、层与层之间的加工时间间隔和扫描方式)下的选择性激光烧结成型件密度的实测数据集,应用基于粒子群算法寻优的支持向量回归(SVR)方法,建立了加工工艺参数与成型件密度间的预测模型,并与BP神经网络模型进行了比较.结果表明:基于相同的训练样本和检验样本,成型件密度的SVR模型比其BP神经网络模型具有更强的内部拟合能力和更高的预测精度;增加训练样本数有助于提高SVR预测模型的泛化能力;基于留一交叉验证法的SVR模型的预测误差最小.因此,SVR是一种预测选择性激光烧结成型件密度的有效方法.关键词:选择性激光烧结密度支持向量机回归分析

关 键 词:选择性激光烧结  密度  支持向量机  回归分析
收稿时间:2009-01-15

Density prediction of selective laser sintering parts based on support vector regression
Cai Cong-Zhong,Pei Jun-Fang,Wen Yu-Feng,Zhu Xing-Jian and Xiao Ting-Ting. Density prediction of selective laser sintering parts based on support vector regression[J]. Acta Physica Sinica, 2009, 58(13): 8-S14
Authors:Cai Cong-Zhong  Pei Jun-Fang  Wen Yu-Feng  Zhu Xing-Jian  Xiao Ting-Ting
Abstract:The support vector regression (SVR) approach combined with particle swarm optimization for parameter optimization, is proposed to establish a model for estimating the density of selective laser sintering parts under processing parameters, including layer thickness, hatch spacing, laser power, scanning speed, ambient temperature, interval time and scanning mode. A comparison between the prediction results and the results from the BP neural networks strongly supports that the internal fitting capacity and prediction accuracy of SVR model are superior to those of BP neural networks under the identical training and test samples; the generation ability of SVR model can be efficiently improved by increasing the number of training samples. The minimum error value is provided by leave-one-out cross validation test of SVR. These results suggest that SVR is an effective and powerful tool for estimating the density of selective laser sintering parts.
Keywords:selective laser sintering   density   support vector machines   regression analysis
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号