首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative determination of mebeverine HCl by NMR chemical shift migration
Authors:Ian S. Blagbrough  Manal S. Elmasry  Timothy J. Woodman  Afaf Aboul Kheir
Affiliation:a Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
b Department of Analytical Chemistry, Zagazig University, Egypt
Abstract:Quantitative 1H NMR spectroscopic methods are not frequently reported, but current NMR instrumentation allows ready access to such data. Mebeverine HCl is an attractive molecule for NMR spectroscopy teaching purposes as it possesses a variety of simple but significant functional groups; we fully assign its 1H and 13C NMR spectra. Using mebeverine HCl, we show that concentration changes, in water as a solvent, can lead to significant changes in the 1H chemical shifts of non-exchangeable aromatic protons and to a lesser extent to aromatic methoxy protons. An important observation is that different protons migrate to different extents as the concentration of the solute is varied, and thus the 1H NMR spectra are concentration-dependent across a useful range. This chemical shift variation of selected protons was therefore analyzed and applied in the quantitative determination of mebeverine HCl in a medicine (Colofac IBS) formulated as a tablet. Self-association phenomena in water could account for these observed chemical shift migration effects as shown by determining the hydrodynamic radius from the modified form of the Stokes-Einstein equation, and thence the apparent hydrodynamic volume, VH, for mebeverine HCl in D2O solution which is 10-fold greater than that seen in either CDCl3 or CD3OD.
Keywords:Chemical shift variation   Diffusion   1H NMR   Mebeverine HCl   Quantitative analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号